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ON THE KINETIC EVALUATION OF THERMOANALYTICAL 
CURVES. PART 1. A SIMPLE MATHEMATICAL EXAMPLE 
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ABSTRACT 

In thermal analysis, the actual temperature inside the sample usually differs from the 
prescribed temperature. This fact may influence the evaluation of the kinetic parameters. In 
this paper the effects of slightly curved actual temperature-time functions are studied. It is 
shown that an alteration of about 5 K from the prescribed linear temperature program and its 
neglect in the kinetic evaluation can change the formal reaction order and the apparent 

activation energy by about 20%. 
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heating rate 
pre-exponential factor 
constants 
activation energy (molar) 
formal reaction order 
a shape index characterizing the peak asymmetry 
gas constant 
time 
temperature 
parameters of a hyperbolic temperature program 
reacted mole fraction 
indicates averages 

Subscripted symbols 

C, and C, constants of eqn. (9) 
T,, T, and T two arbitrarily chosen temperatures and their arithmetic mean, respectively 

Ti, TI and T, the initial and final temperatures of a reaction and their arithmetic mean, 
respectively 

T LIN iand THVP temperatures of linear and hyperbolic temperature programs, respectively 

xP reacted mole fraction at the peak maximum 
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Functions 

f(x) describes the dependence of dx/dt on x 

g(x) the integral of l/f(x) 

g 
-I the inverse function of g(x) 

INTRODUCTION 

The mathematical model most frequently used for the kinetic description 
of thermoanaljrtical curves is 

dx/dt = A eeEIRTf( x) (1) 

where x is the reacted mole fraction and f(x) is a continuous function with 
positive values in the interval 0 -C x -C 1. When f(x) is a decreasing function, 
it is usually approximated by the formula 

f(x) = (1 -x)” (2) 
where n is the formal reaction order. 

The evaluation of the unknown parameters of eqn. (1) is greatly in- 
fluenced by the various types of experimental errors. According to experi- 
ence, it is relatively easy to fight against the effects of random errors by 
carefully collecting, handling and processing the experimental data. A more 
serious problem may be caused, however, by the systematic experimental 
errors. In thermal analysis, a frequent error of this type is the systematic 
alteration of the actual sample temperature from the values prescribed by the 
temperature program. We shall examine in this paper how an unwanted 
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Fig. 1. A hyperbolic temperature program modelling a thermal lag in the domain of a first 
order reaction with E = 160 kJ mole-’ and A = 1012 s-‘. 
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curvature of the actual T(t) function changes the width and shape of the 
thermoanalytical curves and the values of the estimated kinetic parameters. 
The treatment will be restricted to a mathematically simple special case 
where it is easy to deduce explicitly the effects of the curvature of the actual 
temperature function in the evaluation of the kinetic parameters. Of course, 
the examination of a particular case cannot lead to complete and general 
solutions, but it can be shown in this way, step by step, how a relatively 
small alteration can lead to significant errors in the kinetic parameters. The 
general case of the imperfect temperature programming will be discussed 
later [l]. 

The considerations to be outlined may be useful in the judgement of the 
reliability of the published kinetic data and may help in deciding whether the 
evaluation methods deduced for strictly linear temperature functions are 
suitable for the evaluation of particular data. 

A SIMPLIFIED MODEL TO STUDY THE EFFECTS OF CURVED TEMPERATURE 
PROGRAMS 

Rearrangement and integration of eqn. (1) give 

g(x) =/A epEIRT dt (3) 

where g(x) is the integral of l/f(x). From a mathematical point of view, the 
simplest r(t) function is the hyperbola, since in this case a differential of t is 
proportional to d( l/T) and the integration on the right-hand side can be 
carried out immediately [2]. Thus the simplest way of studying the effects of 
the curvature of the temperature programs is to assume that the planned 
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Fig. 2. The difference between the linear and hyperbok temperature programs shown in 
Fig. 1. 
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Z’(t) is linear and the actual T(t) can be approximated by a hyperbolic 
function in the range of the reaction being examined. In mathematical form 

T T 
1 

ACT= HYP= - 
u - ut 

(T+TGT~) (4) 

where TACT is the actual temperature, THyp is a hyperbolic T(t), u and v are 
parameters, and Ti and Tf are the initial and final points of the temperature 
interval considered. 

Figure 1 shows an example when a hyperbolic T( t ) models a thermal lag. 
The thermal lag itself is shown in Fig. 2. Figure 3 shows an example when a 
hyperbolic T(t) is lagging at the beginning of the reaction interval and 
precedes the prescribed linear T(t) at the end of the reaction interval. The 
domain of these figures corresponds to the reaction interval of a first order 
reaction with parameters E = 160 kJ mole-’ and A = lOI s-’ at a heating 
rate of 4 K min- ‘. 

These figures can be regarded as typical examples. Let (t,, T,) and (t,, T2) 
stand for the points of interception of a linear and a hyperbolic T(t). (If a 
hyperbolic T(t) does not intercept the prescribed linear T(t) at two points, it 
is not suitable to model an erroneous actual temperature function.) It can be 
shown (see the Appendix) that the difference in a linear and a hyperbolic 
T(t) between the points of interception is always similar to that in Fig. 2 
since it is always a convex function of t with a maximum slightly right of the 
middle point of interval [t,, t2]. The magnitude of this maximum is given by 

m4Tm - LP )=(T,- T,)2,‘4T (5) 
where T,, T2 and T are the temperatures of the points of interceptions and 
their arithmetic mean, respectively (the deduction can be found in the 
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Fig. 3. A hyperbolic temperature program modelling a 
temperature program. 

systematic alteration from a linear 
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Appendix). Equation (5) serves only for illustration. It can help to calculate, 
for example, that a thermal lag of 5 K corresponds to a domain of 
T2 - T, = 90 K around 400 K and to T, - TI = 155 K around 1200 K. It 
may be worth noting that a domain of Tf - Ti = 90 K corresponds to a first 
order reaction of E = 80 kJ mole-’ around 400 K while a domain of 
Tf - Ti = 155 K belongs to E = 420 kJ mole-’ around 1200 K. [These 
activation energies were calculated by eqn. (13).] 

EVALUATION OF (x, T) DATA 

Considering first the simplest case, we shall examine in this section what 
errors arise in the estimation of the kinetic parameters if T(t) = THyp( t) and 
a set of (x, T) data is evaluated by mathematical formulae deduced for 
linear T(t) functions. This example models those cases of the kinetic 
evaluation when the actual temperature of the sample is measured and 
recorded with an acceptable precision and the only error of the evaluation is 
the use of inappropriate mathematical equations. (The cases when the 
prescribed values of T are used instead of the actual ones will be examined 
in the next section.) 

Equation (4) shows that d( l/T) = --2) dt at hyperbolic heating programs 
and, as pointed out by Zsako [2], integration of eqn. (3) immediately yields 

g(x)=% eFE/RT=exp(ln $-E/RT) 

Denoting the inverse function of g(x) by g-l, x can be expressed as a 
function of temperature 

x=g-1 In $- E/RT 

At linear temperature programs, the Coats-Redfern approximation [3] can 
be used. Its general form is 

In g( x)/T2 = c, - c2/T (8) 

where c, and c2 are constants. It can be shown [4] that 
(i) the relative precision of eqn. (8) is about 10M4 at the usual values of 

E/RT; 
(ii) c2 is approximately equal to E/R within an error of 0.5%; 
(iii) c, is approximately equal to In AR/uE within an error of 3%. 
Equation (8) can be transformed into a’more suitable form if its left-hand 

side is written as In g(x) + 2 In (l/T) and In (l/T) is approximated by a 
linear function of l/T. In this way the well-known approximation is 
obtained 

In g(x) = C, - C,/T 

where C, and C, are constants. 

(9) 



Several methods of deduction can lead to approximations of this type. We 
prefer the deduction from the more precise eqn. (8) for two reasons: 

(i) the errors of eqn. (8) can be directly deduced from reliable PadC 
approximations and in this way it can be shown [4] that the error of eqn. (9) 
consists almost entirely of the error of the linearization of the term 2 In l/T 
and, at usual reaction intervals, the relative precision of eqn. (9) is in the 
order of 10-3; 

(ii) the connection between the constant C, and the parameter E can be 

given by a mathematically simple formula. If 2 In (l/T) is developed into a 
Taylor series around the middle point of the temperature interval, T,, then 
the following approximation can be obtained 

C, = E/R + 2T, = (E + 2RT,)/R (10) 

In a similar way it can be shown that C, is approximately equal to 
In( A R/aE + 2 In T,. 

From eqn. (9) x can be expressed in the form 

X=g-‘[exp(C, - CJT)] (11) 

Note that from a mathematical point of view, the right-hand sides of eqns. 
(7) and (11) are identical, the only difference between them is the physical 
interpretation of the constants. Thus data (x, T) of a hyperbolic T(t) can be 
described by equations deduced for linear T(t), but in this case the obtained 
values of E and log A will differ systematically from the true values. The 
difference between the true and the obtained value of E, as can be read from 
eqn. (lo), is about -2RT,. [If eqn. (11) is used instead of eqn. (7), the 
coefficients of l/T are interpreted as (E + 2RT,)/R instead of E/R.] In 
the case of Figs. 1 and 3 the error of E would be about - 10 kJ mole-’ which 
corresponds to - 6% at E = 160 kJ mole- ‘. Since the mean temperature of 
the reaction is correlated with E, an error of -2RT, usually represents a 
relative error of roughly the same magnitude. For example, if we assume that 
20 G E/RTG 50, then -2RT, represents a relative error between - 10 and 
-4%. 

Finally a few remarks will follow about the geometric interpretation of 
eqns. (7) and (11). If data x are plotted vs. l/T, C, and C, can be interpreted 
as scale‘factors defining the position and width of the curve. Regarding the 
width of the curves on the plots x vs. l/T, it is entirely defined by the value 
of C,. Let us choose, for example, two arbitrary values, of x, say x, and x2, 
and denote the corresponding temperatures by T, and T2. Now we can write 

l/T, - l/T, =[ln g(x2) -In g(x,)] R/( E + 2RT,) (12) 

if T(t) = TLIN and 

l/T,-l/T,=[lng(x,)-lng(x,)]R/E (13) 

if T(t) = THyp. A comparison of these equations shows that the x vs. l/T 
curves are sharper at T(t) = TLrN than at T(t) = THyp. It will be shown later 
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[I] that any concave curvature of the temperature program widens the curves 
on the x vs. l/T diagrams and in this way diminishes the apparent 
activation energy. 

ESTIMATION OF THE KINETIC PARAMETERS WITHOUT KNOWLEDGE OF THE 
ACTUAL TEMPERATURE 

In the previous section, the actual temperature of the sample was sup- 
posed to be available. In the present section, we shall deal with those cases 
when the prescribed temperature values are used instead of the actual ones. 
In other words: it will be supposed here that the measured x or dx/dt data 
are evaluated with such temperature data which have been calculated from 
the equation 

T= T,+at 

where a is the heating rate and To is the starting point of the prescribed 
temperature program. From a mathematical point of view, it means that the 
measured x or dx/dt data are related to time instead of temperature and are 
evaluated by the assumption of such theoretical x(t) or dx/dt( t) functions 
which have been deduced for linear temperature programs. 

First, let us study the estimation of E at a given f(x) function. As has 
been pointed out, E is strongly connected with the average width of curves 
x( l/T), and as has been illustrated by eqns. (12) and (13), the curvature of 
the temperature program actually changes this average width. The use of the 
prescribed temperature data instead of the real sample temperature changes 
virtually the width of curves x(1/T). The resultant error is obviously the 
sum of these actual and virtual changes. 

In the following, we shall briefly examine how the average width of curves 
x( l/T) are changed by the use of erroneous temperature values in the 
calculations. The average width can be formed by choosing several points 

(5 T,) and (~2, T2) and calculating either the arithmetic mean or some 
weighed average of differences l/T, - l/T,. (If weight factors are used, they 
have to be deduced by statistical considerations.) Denoting the averages by 
angle brackets, eqn. (12) immediately yields 

(l/T, - l/T,) = (ln g&) - ln g(x,)P/(E+ 2RL) (14 

Using the Taylor series, for the relative error of (l/T, - l/T,) 

Here (6T,) and (&T,) are the average errors of TI and T,, respectively. In 
the case of thermal lags, e.g., in Fig. 1, (ST,) and (6T,) have the same sign, 
thus they partially compensate each other. In other cases, however, eqn. (15) 
may give a considerable value. Regarding Fig. 3, for example, (ST,) is about ~ 
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- 1 and - 2 K while (6T,) is around -I- 2 and + 3 K, depending on the way 
of averaging. These values lead to a relative error of E in the magnitude of 
- 5 and - 10%. Now let us study those cases when function f(x) contains an 
unknown, adjustable parameter. Continuing with the example treated in the 
previous section, it will be supposed that the temperature of the sample is a 
hyperbolic function of t while the prescribed temperature is linear. Putting a 
hyperbolic T(t) into eqn. (7) and T= To + at into eqn. (1 l), it is seen that, 
contrary to the case of functions x(T), the x(t) functions have different 
forms at hyperbolic and linear heating programs. Consequently, erroneous 
f(x) functions may give a better fit than the true ones. If f(x) contains an 
unknown parameter, then the evaluation by the prescribed temperature 
values may result in an error of this parameter. Since the estimators of the 
energy of activation depend on f(x) [see, e.g., eqn. (12)], an extra error term 
may be added to E in this way. In the following parts of this section, the 
estimation of the formal reaction order, n, will be discussed as an example. 

The formal reaction order is strongly correlated to the degree of asymme- 
try of curves x(t) or dx( t)/dt [5-l I]. The degree of asymmetry can be 
characterized in an endless number of ways. We shall use Balarin’s char- 
acterization [7]: the degree of asymmetry will be characterized by the ratio of 
the amounts of sample reacted after the peak maximum and before the peak 
maximum. This ratio will be denoted by Y. The mathematical form of this 
definition can be written in the form r = (1 - xp)/xp, where xp is the reacted 
mole fraction at the peak maximum. Accurate formulae for the calculation 
of xp are available at linear temperature programs [X-lo] as well as at 
hyperbolic temperature programs [9,11]. Using these formulae, we have 
calculated the values of r at linear and hyperbolic temperature programs. 

At a hyperbolic T(t), r is a function of only n while at a linear T(t) it 
depends slightly on the value of E/RT,, too, where Tp is the temperature of 
the peak maximum. In the present calculations a medium value of E/RT,, 
30, was supposed. The values of Y are shown in Table 1. The data corre- 
sponding to the linear and hyperbolic temperature programs are denoted by 

rLIN and ‘HYP, respectively. At low values of n, there are no significant 
differences between the values of rLIN and rHYP. This is not surprising, since 

rLIN and rHYP are continuous functions of n and any rising temperature 
program has to lead to r = 0 at n = 0. At higher values of n, however, 
especially above n = 1, there are significant differences. Between n = 1 and 
n = 2, for example, a value of rHYP( n) is roughly equal to a value of 
rLIN( n - 0.25). Th us if a data set (x, t) or (dx/dt, t) which belongs to a 
hyperbolic T(t) is evaluated by the assumption of a linear T(t), then the 
erroneous interpretation of the degree of asymmetry leads to an error of 
an=- 0.25 in this range. The errors of n also affect the evaluation of E. As 
can be shown [lo], an error of Sn = -0.25 decreases E by about 8%. (Note 
that this error has the same sign as the error treated in the’previous section.) 
Since n is only a formal reaction order, it may also have values higher than 2. 
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TABLE 1 

Values of a shape index at linear and hyperbolic heating programs 

0 0 0 

0.25 0.20 0.19 

0.50 0.36 0.33 

0.75 0.51 0.46 

1 .oo 0.64 0.58 

1.25 0.77 0.69 

1.50 0.89 0.80 

1.75 1.01 0.90 
2.00 1.13 1 .oo 
2.25 1.24 1.10 

2.50 1.36 1.19 

2.75 1.47 1.28 

3.00 1.57 1.37 

Above n = 2, the error of n (and in this way, also the error of E) is 
considerably higher. At n = 3, for example, the error of n would be about 
-0.5 which would add an error term of - 16% to E. 

CONCL&ONS 

Three types of errors have been treated. It may be worth noting that these 
errors may cumulate in the evaluation of the activation energy. The cumula- 
tion of the errors depends only slightly on the method of evaluation, since 
any useful evaluation method should give a good fit for such fundamental 
properties of the experimental data as the peak asymmetry of curves dx( i)/dt 
or the average width of curves x vs. l/T, The cumulation of the errors can 
lead to a decrease of E by as much as 20% if the formal reaction order is 
between 1 and 2 and it can lead to a higher decrease if n is higher than 2. It 
will be shown in a subsequent paper [l] that the hyperbolic temperature 
programs have no special features discriminating them from the other 
slightly curved T(t) functions. Thus other temperature programs having the 
same magnitude of curvature may also lead to the same magnitude of errors. 
If a higher precision is required in the kinetic evaluation; then, obviously, a 
higher precision is required in the measurements, e.g., thermal lags of about 
5 K are not permitted inside the samples. More details on this subject will be 
given in Parts 2 and 3 of this work. 
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APPENDIX: PROPERTIES OF THE DIFFERENCE OF A LINEAR AND A HYPER- 
BOLIC Z-(t) FUNCTION 

The place and the magnitude of the maximum of ( TLIN - T,,,) will be deduced here. 

Notation 
Lef (t,, T,) and ( t2, T2) be the points of interception. [Only such TLIN( t) and THyp( t) will 

be treated here, which intercept each other.] The value of t at max(T,,, - THyp) will be 
denoted by t,,. T and AT will stand for the arithmetic mean and the difference of T, and T,. 

To simplify the treatment t, will be chosen to be the null point of the time scale. Thus 
T&O)= T, and THYP(t) will have the form 

1 1 

T HYP =rvt 

Lemma 

T HYP is equal to fl at the maximum of T,,, - THyp. 

Proof 
Let us express v from eqn. THyp ( t2) = T,. Rearranging l/T, = l/T, - vtZ, we get 

u =(1/T, - l/T,)/t, =(1/T, -l/T,)/(t, - t,) 

T, - T, 1 = ~ - = a/T,T, 
t,--1, TIT, 

where a is the slope of the linear T(t) drawn through points (t,, T,) and (t,, T2). 
Differentiation of eqn. (Al) gives 

dTHyp /d t = v TAyp 

(Al) 

642) 

643) 
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Equations (A2) and (A3) yield 

d( TLrN - THYP)/dt = a - v T& = a - a T&,/T,T, 

At Twe=cv. gh T T the ri t-hand side vanishes. Since d2( T,,, 
CO, there is a maxtmum at THyp = m. 

Lemma 

Proof 
Let us express t,,, from the equation THyp( t ,,, ) = m 

t,,, = (l/T, - l/\IT7T;)/v = (T, - \/T77;;>/a 

Hence 

max(T,,,-TT,v,)=T,,,(t,,,)-_=TT,+T,-2~ 

=2(T-m) 

Statement 

- 
(‘44) 

T,,,)/dt’= -d2THup/dt2 

(A61 

647) 

Equation (5), quoted at the beginning of this paper, is valid. 

Proof 

z~-(AT)~/~T (J48) 

!f AT is comparable to a reaction interval, then r2 B( i AT)2. Thus the Taylor series used in 
the last transformation is a good approximation. 

Substituting the right-hand side into eqn. (A5), we get 

max(T,,, - THYP)=(AT)2/4T (A9) 

Q.e.d. 

Proof 
The combination of eqns. (A6) and (AS) gives 

t,.,=[T2-T+(AT)‘/8T]/a=0.5 t2(l+AT/4T) 

If AT is comparable to a reaction interval, AT/4T is smaller than 0.1. 

(AlO) 

(All) 


